
A Product Line Asset Management Tool

Stefan Bellon, Jörg Czeranski, Thomas Eisenbarth, and Daniel Simon

Universität Stuttgart
Universitätsstraße 38

70569 Stuttgart, Germany
{bellon,czeranski,eisenbarth,simon}@informatik.uni-stuttgart.de

Abstract. When developing a software product line, software engineers
are confronted with the task of configuration and revision management
for the product line as a whole. Furthermore, both on domain and prod-
uct level explicit variation management has to be provided for. While
there are partial solutions to these tasks, there is no integrated support
for the product line developers.
In this paper we present a tool for the integrated management of software
assets for software product line development. We address the problems
of configuration and revision management, explicit variation point han-
dling, and the differences in domain and product development. In our
approach, the available solutions to specific tasks are integrated to pro-
vide a new solution.

1 Introduction

Companies developing software in a product line face at least three major prob-
lems: first of all, product line development makes the task of configuration and
revision management much more difficult and error prone compared to the de-
velopment of a single product. Secondly, explicit variation management in (hi-
erarchical) software product line architectures is required. At last, we have to
distinguish between domain development on one side and product development
on the other.

There are already partial solutions for these tasks available. But up to now,
there is no integrated approach to solve these problems. In this paper, we in-
troduce a tool named Product Line Asset Manager (PLAM) that reflects the
roles in software product line engineering as suggested in the STARS Two Life
Cycle Model [1]. By the means of these roles we differentiate between the do-
main and product aspects of the development. The PLAM tool can integrate an
arbitrary revision management system that provides basic operations for ver-
sion control. The tool manages components, variants, and products with their
complete revision history and explicitly handles architectural variation points.
The PLAM tool serves as an extensible platform for the integration of various
available methods for specific tasks in software product line development. The
tool covers the whole product line life cycle.

The rest of the paper is organized as follows. In Sect. 2 we give an overview
of our PLAM tool. The basic operations of the tool are introduced in Sect. 3.



We then show how to combine the basic operations in order to complete more
complex tasks in Sect. 4. Next, in Sect. 5 we give generic examples of product
line development processes that are supported by the PLAM tool. Section 6
reports on related work and we conclude the paper in Sect. 7.

2 Tool Architecture

In this section we describe the architecture of our PLAM tool and the archi-
tectural model for product lines. In Sect. 2.1 the roles involved in product line
development are defined. Sect. 2.2 introduces our generic architectural model.
The architectural views of the different roles are presented in Sect. 2.3. Finally,
Sect. 2.4 outlines the data storage and management used by the PLAM tool.

As a running example we use a product line of compilers with a standard
architecture taken from the compiler domain. As usual, the compiler is composed
of a front-end, a middle-end, and a back-end interconnected via a symbol table.
The product line contains many variation points. The front-end is implemented
either in a monolithic or modular way and analyzes either C or Ada95. The back-
end produces code for either RISC or CISC processors and optionally provides an
optimizer. The optimizer for the CISC back-end is restricted to the C language.
The high level structure of the compiler product line architecture is visualized
in Fig. 1 and explained in detail in Sect. 2.3.

2.1 Roles

In the context of our PLAM tool we make use of the following three roles:

Programmer (P) A person responsible for the implementation of the software
artefacts.

Product Engineer (PE) / Core Asset Engineer (CAE) A person respon-
sible for a single product or some set of core assets respectively. He is re-
sponsible for the coordination of programmers and product specific changes
to the architecture.

Product Line Engineer (PLE) A person responsible for the whole product
line and its architecture. He coordinates activities concerning the product
line as a whole and therefore collaborates with product engineers and core
asset engineers.

Any person can occupy several roles at different times. It might be neces-
sary for more than one person to fill a role so that the organization’s structure is
reflected. For each product line, there is one product line engineer; for each prod-
uct or core asset there is one product engineer or core asset engineer and several
programmers. The roles presented above cover the activities of quality assurance
engineers, technical writers, software architects, product line designers, test en-
gineers, and so forth. We do not restrict our model to any specific organizational
structure of software product line development. With our approach we provide
generic support for the various organizational models and for the management
of software product line artefacts that can be found in [2].

2



CAda95

Scan

CAda95

Parse

Component Variant Dependency

C

Scan & Parse

Ada95

default default

default default

Compiler

default

Back EndFront End

Modular FE

Compiler Product Line

Monolithic FE
SymTable

Middle End

default

default

RISC Processor

CISC Processor

Optimizer Code Gen

Optimizer Code Gen

Fig. 1. The Compiler product line as seen from the product line engineer’s view.

2.2 Architectural Model

In this paper we describe the architecture of a software product line in a uniform
and abstract way by defining the architectural elements and relations between
them as follows:

Component A component consists of one or more variants.
Variant A variant either consists of further components (thereby providing the

means for hierarchical decomposition), or it consists of releases.
Release A release consists of a set of objects in a state in which they can be

deployed as a part of the product.
Object An object is a software artefact such as source code, documentation, or

test plans.
Version Objects are available in different versions. Version control can be pro-

vided by some standard version control system such as CVS, RCS, or any
other available revision management tool.

Action All of the above elements can be associated with actions that are exe-
cuted for certain operations on these elements.

3



R1 R2

R1 R2 R1

R1 R1
R1

Scan (C)

Parse (C)

Component Variant
Dependency

read−only

Compiler Product "C99"

Back End (CISC Processor)Front End (Modular FE)

Middle End
(default)

SymTable
(default)

Compiler (default)

(default)
Code Gen
(default)

Optimizer

Fig. 2. The C99 product as seen from the product engineer’s view.

Because of the alternating structure of components and variants, adding vari-
ants where there has not been a variation point before is simple.

Components and variants may have binary relations expressed by depen-
dency arrows in our drawings. Those relations can be “depends on”, “excludes”,
“suggests”, etc, but we do not specify the relations in further detail here and
leave it to the user of the model to specify relations and consistency checks.
Variants of one component implicitly exclude each other, i. e., one has to select
at most one of its variants when instantiating a component for a product. If
no variant of a component is selected for the initiation of a product, the vari-
ant has to be implemented within the product development process. Variants
of components model variation points that are bound at product instantiation
time. Other kinds of variation points can be captured by the architecture and
the implementation of the components, e. g. plug-in mechanisms. Based on those
relations and a user specified decision function, the creation of products from
the product line can be guided.

All architectural elements and their complete version history are stored in
repositories. To each variant of a component a product engineer or a core asset
engineer is assigned as responsible for development and maintenance of that
variant. Moreover, components can be product-specific and do not show up in
the product line architecture at all. Product parts which are considered core
assets and which are directly taken from the product line can be marked as
read-only in the product engineer’s view. Only the assigned persons are allowed
to make modifications to the repository objects.

4



READMEMakefileC.yacc
AST.c

C.flex
SymTab.c

CG.cPeep.c
Makefile tests.sh

V1.1

Scan (C)/R2

Parse (C)/R2

Component
Dependency

read−only
Object

Version

(default)/R1
Code Gen

V6.5

Optimizer
(default)/R1

V1.3

Compiler Product "C99"

V1.7 V1.3

V1.1V1.6 V2.9

Back End (CISC Processor)Front End (Modular FE)

Middle End
(default)/R1

SymTable
(default)/R1

V7.0

V8.0

Compiler (default)

Fig. 3. The C99 product as seen from the programmer’s view.

For all architectural elements, actions can be specified for each repository
operation. These actions are executed whenever the corresponding repository
operation on the architectural element is carried out. In cases when there are
several actions to be performed, the user has to provide the order of execution.
Actions can be used to implement the binding of compile time variation points.
They can be specified using e. g. shell scripts or other generative methods. We
give an example for an action in Sect. 4.

We do not specify the architectural elements in more detail here because we
believe that the concrete representation can be left to the implementation. In
our experience, concrete representations can be mapped onto our model.

2.3 Architectural Views

A software product line architecture can contain all of the architectural elements
described in Sect. 2.2. Depending on the role of the user of the PLAM tool some
of the information is blinded out. The three different views are illustrated in our
product line example in Figs. 1, 2, and 3.

The view of a product line engineer does not reveal the details below the vari-
ant level. Components, variants, and dependencies between those architectural
elements are visible to the product line engineer. The releases and the versions
of objects are hidden in his view. In our example in Fig. 1, the top level compo-
nent Compiler represents the whole compiler product line. Furthermore there is
a component Front End which is implemented by the two variants Monolithic FE
and Modular FE.

5



The view of a product engineer flattens variants relevant for the product into
their enclosing components whereas irrelevant variants are simply omitted. In
addition, all releases of the components are displayed. E. g. in the view of a prod-
uct engineer responsible for the development of a compiler C99 with a modular
C front-end and an optimizing back-end for CISC processors the architecture
is shown in Fig. 2. The component SymTable is marked read-only for the C99
compiler product.

The programmer’s view is basically the same as the product engineer’s view.
However, for each component a release has been selected and the objects of that
release are displayed along with their version. In Fig. 3 object C.yacc is checked
out in version V1.6 and being part of component Parse (C) in release R2.

Note that the hiding of architectural elements affects the workspace of the
particular role. Any person can take a look at a different role’s view on the
product line for informational purposes.

2.4 Repositories

As depicted in Fig. 4, the PLAM tool manages a number of repositories, one for
each product or core asset development group and one for the whole product
line. The product line engineer has a repository for storing the product line
data, e. g., the product line architecture, the core assets, the product instances
of the product line, and the product catalogue. For the product instances, the
product engineer and the programmers of a product share a common product
repository containing the release catalogue, the product architecture, product
specific components, hot fixes, etc. Likewise, the core asset engineers share a
core asset repository with their particular core asset programmers.

The PLAM tool reflects the three roles introduced in Sect. 2.1. For each
person filling the role of the product line engineer, a product engineer, a core
asset engineer, or a programmer exists a workspace where the person can change
the architectural elements of his view. Depending on the view the tool provides
a number of operations to manipulate the objects in the repository and means
for communication between the roles. These operations are described in Sect. 3.

Product Catalogue The product catalogue is administrated by the product
line engineer and contains all data required for building each of the deployable
products of the product line. This data consists among other things of the prod-
uct configuration, i. e., the product architecture containing selected variants,
product specific components, the access permissions, the parameters of actions,
and so on. Furthermore, it contains links to the product repository and core
asset repositories that are necessary for the build of the product.

Release Catalogues Upon notification by a programmer the product engineer
can create a new release of a component by selecting a releasable version of each
object belonging to the component. For the release process, the product engineer
can alter his view to make visible the releases and versions of his product’s

6



Asset
Repository

Core

SymTable

update

checkout

commit

update

checkout

commit

commit

update

checkout

release

P

no
tif

y

br
oa

dc
as

t

CAE
PE

no
tif

y

br
oa

dc
as

t
PLE

commit

update

checkout
Repository

Product
Line

Repository Role Workspace Basic Operation

Product
Repository

C99

commit

update

checkout

release

update

checkout

commit

update

checkout

commit

promote

reconfigure

initiate

pr
om

ot
e

initia
te

reconfigure

Fig. 4. An overview of the PLAM tool architecture.

components. The selected versions comprise the release which is stored in the
release catalogue. The release catalogue contains releases for all components in
the product repository. This way, it is possible to recover all deployable product
releases. The same procedure applies to core asset development groups and their
core assets.

In Fig. 5, the history for the objects of the compiler front-end in the C99
product is shown. Small dashes indicate object versions and the circles mark the
releasable versions of the objects. In order to create a release of the front-end at
time T2, the product engineer specifies a release r2 =< a1, b1, c3, d1, e1, f2 >.

The releases of components propagate through the product line as indicated
in Fig. 6. A programmer of the SymTable core asset development group commits
his changes to the object SymTab.c frequently. Some of his versions are considered
releasable by his core asset engineer. Whenever the core asset engineer creates
a release of SymTable the product line engineer can promote it to the product
line. Afterwards, the releases of SymTab.c are available to the product engineer
of C99. A programmer of C99 can update his local copy of the object as soon as
his product engineer reconfigures the product.

7



T2 T3T1

README

C.flex

Makefile

tests.sh

C.yacc

Makefile

S
ca

nn
er

P
ar

se
r

time

a2
a3

b1 b2 b3

c1 c2 c3 c4

d1 d2 d3

e1 e2

f1 f2 f3

a1

Fig. 5. The history of some objects in the C99 product repository.

SymTab.c

P ("C99")

PE ("C99")

PLE ("Compiler")

CAE ("SymTable")

P ("SymTable")

update

reconfigure

release

promote

commit

time

Fig. 6. The propagation of changes to an object through the product line.

8



3 Basic Operations

The basic operations are divided into three categories. The first category affects
the respective workspaces only. The second category of operations interacts with
the role’s repository. The third category is used for interaction between roles and
their repositories. The basic operations of the latter two categories can trigger
actions attached to the architectural elements.

We discuss the details of basic operations shown in Fig. 4 in the following:

1. Local
change Changes the checked out information in the workspace at each level

in the tool architecture. This basic operation is not shown in Fig. 4 since
it just affects the workspace.

2. Horizontal
checkout/update Checkout obtains the initial copies of architectural ele-

ments from the repository. Update gets newer versions for already ob-
tained architectural elements.

commit Commit publishes the changes of an architectural element to the
repository.

3. Vertical
initiate/reconfigure The product line engineer and a product engineer

jointly create or update a product repository from the product line repos-
itory. These operations create the product architecture and verify its de-
pendencies. If initiating a new product or reconfiguring a product due
to the replacement of a variant, the variants for components have to be
selected. The selection can be supported by a decision model based on
the product line architecture.

promote The product line engineer publishes changes in products or core
assets to the product line repository by adopting releases of and archi-
tectural changes to the product or core asset.

release The product engineer accepts specified versions of a set of releasable
objects to be part of a released component.

notify After a programmer commits a version of an object he can notify his
product engineer so that the product engineer can release it. Likewise,
after a product engineer creates a new release or commits architectural
changes to the product he notifies his product line engineer so that the
product line engineer can promote them.

broadcast After a product line engineer promotes changes he broadcasts
this information to all the product engineers and the core asset engineers
of the product line. If a product engineer considers the changes in the
product line useful for his product, he reconfigures the product repository
and broadcasts the information about the change to all his programmers.

The first two categories correspond to standard version control operations
whereas the last category provides additional functionality required for parallel
management of variants and versions in a product line. Examples for the usage
of the basic operations are described in Sect. 4.

9



4 Use Cases

In this section, we show how the users of the PLAM tool can combine the basic
operations in Sect. 3 to get their daily work done. We present some of the funda-
mental use cases in the following. The details such as the appropriate contents
delivered by notify and by broadcast, have to be defined by the organization
using the PLAM tool. The names for the architectural elements used in this
section refer to the examples presented in Figs. 1, 2, and 3.

Initiate new product Suppose we want to build a new product C99 in our
Compiler product line. First, the product line engineer and a product engineer
assigned to the new product have to initiate the product by choosing appropriate
variants for all required components of the C99 compiler. Afterwards, the product
repository for C99 is created and the product engineer can start to make product
specific changes to the architecture in his workspace. When the product engineer
has implemented the product architecture, the programmers can start checking
out the sources and developing the product.

Update variants from product line After changes originating from a devel-
opment group are promoted to the product line by the product line engineer,
they have to be obtained by any product engineer who needs them. The product
engineer reconfigures the appropriate parts of the product line into his prod-
uct repository. If necessary he updates the architecture of the product in his
workspace and broadcasts the information of the change to his programmers.

Actions associated with the updating of the objects are executed. For exam-
ple, code generation could be implemented by an action. In our compiler C99
a front-end generator can be invoked on a grammar specification for the C99
language to generate the scanner and parser source code.

New release for component When a programmer of C99 develops and changes
components, he commits them to the product repository. If he believes that his
objects are releasable he notifies his product engineer. The product engineer ap-
proves them and creates a new release of the component. He notifies the product
line engineer of the new release.

The existence of a disciplined approval step to validate the changes is an
organizational issue. It can be implemented using a reflexion model checker [3].
The source code produced by the programmers can automatically be checked
for conformance to the architectural constraints specified by the product line
engineer and the product engineer using a reflexion model checker. If one does
not have automated reflexion model support, one can perform a review step with
similar results instead.

Promote component release to product line If the product engineer of
C99 wants to get changes promoted into the product line he commits his archi-
tectural changes, creates a new release consisting of the appropriate versions of

10



the components’ objects, and then notifies the product line engineer. The prod-
uct line engineer approves the changes and can promote a release of a product
engineer’s component either as a new release of the variant or as a new variant
of the component. Furthermore, if the changes to the variant are specific to C99
and not useful for the whole product line, the new release is declared product
specific and is not published to the product line.

When the product line engineer finishes the approval, he commits his changes
to the product line repository and broadcasts the changes to the product engi-
neers.

Request for bug fix Once a programmer of C99 detects a bug in a component
that he is not permitted to change (e. g., the component SymTable), he notifies
his product engineer that a bug fix is needed. In turn, the product engineer
notifies the product line engineer and then dispatches the bug report to the
responsible core asset engineer.

In the unfortunate case of all programmers of the SymTable core asset group
being on holidays (or unavailable due to other circumstances), the programmers
of C99 can decide to hot fix the problem by overriding the permissions of the
SymTable component in their repository. However, such hot fixes are not encour-
aged since they will be overwritten with the next reconfiguration of the product
repository.

When the bug in SymTable is fixed by the core asset development group, the
fix is released by the core asset engineer. Afterwards the product line engineer
promotes the fix and broadcasts its availability. Then the product engineer of
C99 can reconfigure his product repository.

5 Applying the PLAM tool

As we claimed in the beginning of our paper, the PLAM tool does not restrict the
development process for the software product line in any way. In this section,
we provide generic examples of product line development processes that are
supported by the PLAM tool.

First, we take a look at the general setup of product line development pro-
cesses. There are at least two dimensions to be considered:

Product Line Kick-off In the kick-off phase there is a choice between evolu-
tionary and revolutionary introduction of product lines [4]:
Evolutionary The evolutionary introduction starts with one or more ex-

isting products and synthesizes a product line from existing assets by
applying reengineering methods.

Revolutionary The revolutionary introduction discards all existing prod-
ucts (if any such products exist) and starts developing the product
line from scratch. Nevertheless, in a real-world setting one would ap-
ply reengineering methods (such as described in [5, 6]) for asset mining
from existing products even in an introduction scenario that is supposed
to be revolutionary.

11



Product Line Operation The second dimension is the choice of how to op-
erate the ongoing development process during the life cycle of a product
line:
Proactive Operating the product line in a proactive manner means that

there is a planning process for the integration of additional requirements
into the product line as a whole and implementing them on the domain
level.

Reactive The reactive operation introduces additional requirements in sin-
gle products as the requirements emerge. Afterwards, a reactive process
takes actions on the product line level when a change is considered to
be valuable for the product line as a whole. The decision when to inte-
grate the change into the product line can be based on various facts, for
example when the same requirement shows up for the second product.
Architectural gardening [7] is an example for a reactive process.

We believe that in most cases the development of a product line will be an
incremental process. Only product lines that are created once and never changed
again are not incremental. All maintenance and evolutionary changes need incre-
mental processes anyway. We found that almost all product line approaches use
some extractive process for asset mining or the migration from product specific
assets to the product line. Even reusing an architecture of an existing product
might involve some extractive reverse engineering step for architectural recon-
struction. Note that the terms proactive, reactive, revolutionary, evolutionary,
incremental, and extractive are used inconsistently and sometimes even contra-
dictorily by various authors [8–11]. However, the PLAM tool supports each of
these flavors of product line development.

There is yet another aspect of classification for product line development:

Domain focussed In this case, there is a full-fledged core asset base where all
products are created by configuration of the needed assets and no product
specific code is needed.

Product focussed In this case, the only activity carried out in the domain
engineering part of the development is modeling. All products share a com-
mon architecture but all code assets have to be implemented specific to a
product.

For example, the Space Command and Control Architectural Infrastructure
(SCAI) in the STARS Two Life Cycle Model [1] is product focussed. A domain
focussed product line cannot be managed in a reactive way because there are no
changes at product level. A real product line development will be somewhere in
between the two extremes of domain and product focussed development. What-
ever approach is taken it is supported by the PLAM tool.

As an example for the applicability we demonstrate the fitness of the PLAM
tool for an evolutionary and reactive development. In Fig. 7, there is an initial
product line containing the source of the legacy product. If there are multiple
initial products we create multiple variants of the sole component and try to
factor common parts of the product variants in an evolutionary manner. In [12,

12



initiate
+ changes

reconfigure

initial
check−in
of existing
sources

reactive
change

reaction needed!
same again,

MainMain

product A

product B

product C

product specific
change 

product A

product B

product C

Product Line Product Line

New Component

Evolved Product LineInitial Product LineSingle Product

Fig. 7. An evolutionary and reactive development process with the PLAM tool.

13], we present a reverse engineering technique capable of identifying common
parts of multiple products.

After the legacy product is imported as the sole component into the initial
product line, three products which are based on that component are initiated.
In these products, two new requirements show up and are implemented. One
of the requirements is needed twice, thereby triggering the reactive process: the
implementation of the requirement is factored out into a new component in the
evolved product line. Then, the products have to be reconfigured and the product
development group of product C has to integrate its local product specific changes
into the reconfigured product.

6 Related Work

Clements and Northrop [14, 15] discuss the role of configuration management
in the context of software product line development in general. The need for
specific tools for software product line development has been recognized in the
software product line community [16].

General considerations of the organizational structure of software develop-
ment companies can be found in Bosch’s book [8]. In this book, there is also
a discussion of processes for the evolution of software product lines and their
artefacts. In Bosch’s paper [2] an overview of different approaches to the reuse
of software artefacts within an organization is presented.

Krueger [17] describes the variation management as a number of multidimen-
sional configuration management problems. The problems are addressed with

13



lightweight solutions that help to manage the risks, costs, and time for initiating
and running a software product line. The proposed solutions can be realized in
the context of our PLAM tool. Krueger [11] presents a taxonomy for character-
izing the different software product line approaches.

7 Conclusion and Future Work

In this paper, we presented a tool for the management of software product line
assets. Among other things, components, variants, and versions of software arte-
facts can be administrated with our tool. The PLAM tool is independent of
underlying processes and development strategies. It provides hooks for the inte-
gration of tools and methods of other developers.

The idea we presented has been implemented by two groups of students to-
talling 18 persons. One group integrated the PLAM tool as a plug-in for the
Eclipse platform [18], the other group extended our existing Bauhaus reengi-
neering tool suite [19] with the necessary functionality. Both implementations
have recently been completed.

As future work we want to reconcile some ideas we did not discuss in this
paper as soon as we have gained enough experience with the tool in practice.
Some of the interesting issues are for example how to manage objects shared
amongst different variants or how actions exploit architectural information to
generate glue code for plug-in mechanisms. Further challenges we are already
addressing are what kind of decision model can be used in practice, how to
deprecate components and variants, and how dependencies between releases can
be modeled.

References

1. Bristow, D.J., Bulat, B.G., Burton, D.R.: Product-Line Process Development. In:
Proc. 7th ASTC, Salt Lake City, UT, USA (1995)

2. Bosch, J.: Maturity and Evolution in Software Product Lines: Approaches, Arte-
facts and Organization. In: Proc. SPLC2, San Diego, CA, USA (2002) 257–271

3. Koschke, R., Simon, D.: Hierarchical Reflexion Models. In: Proc. 10th Working
Conference on Reverse Engineering, Victoria, BC, Canada (2003) 36–45

4. Simon, D., Eisenbarth, T.: Evolutionary Introduction of Software Product Lines.
In: Proc. SPLC2, San Diego, CA, USA (2002) 272–283

5. Bergey, J., O’Brien, L., Smith, D.: Mining Existing Software Assets for Software
Product Lines. Technical Report CMU/SEI-2000-TN-008, SEI, CMU (2000)

6. Smith, D., O’Brien, L., Bergey, J.: Using the Options Analysis for Reengineering
(OAR) Method for Mining Components for a Product Line. In: Proc. SPLC2, San
Diego, CA, USA (2002) 316–327

7. Faust, D., Verhoef, C.: Software product line migration and deployment. Software:
Practice and Experience 33 (2003) 933–955

8. Bosch, J.: Design & Use of Software Architectures. Addison-Wesley and ACM
Press (2000)

14



9. Bühne, S., Chastek, G., Käkölä, T., Knauber, P., Northrop, L., Thiel, S.: Exploring
the Context of Product Line Adoption. In: Proc. 5th Int. Workshop on Product
Family Engineering, Sienna, Italy (2003)

10. Clements, P., Krueger, C.W.: Being Proactive Pays Off — Eliminating the Adop-
tion Barrier. IEEE Software 19 (2002) 28–31

11. Krueger, C.W.: Towards a Taxonomy for Software Product Lines. In: Proc. 5th
Int. Workshop on Product Family Engineering, Sienna, Italy (2003)

12. Eisenbarth, T., Koschke, R., Simon, D.: Aiding Program Comprehension by Static
and Dynamic Feature Analysis. In: Proc. International Conference on Software
Maintenance, Florenz, Italy (2001) 602–611

13. Eisenbarth, T., Koschke, R., Simon, D.: Locating Features in Source Code. IEEE
Computer Society Transactions on Software Engineering 29 (2003) 210–224

14. Clements, P., Northrop, L.: Software Product Lines—Practices and Patterns.
Addison-Wesley (2001)

15. Northrop, L.: A Framework for Software Product Line Practice. Available online
at http://www.sei.cmu.edu/plp/framework.html (2004)

16. Bass, L., Clements, P., Donohoe, P., McGregor, J., Northrop, L.: 4th Product Line
Practice Workshop Report. Technical Report CMU/SEI-2000-TR-002, SEI, CMU
(2000)

17. Krueger, C.W.: Variation Management for Software Product Lines. In: Proc.
SPLC2, San Diego, CA, USA (2002) 37–48

18. Eclipse Consortium: Eclipse IDE. Available online at http://www.eclipse.org/

(2004)
19. Plödereder, E., Bellon, S., Czeranski, J., Eisenbarth, T., Koschke, R., Simon, D.,

Vogel, G., Zhang, Y.: The New Bauhaus Stuttgart. Available online at http:

//www.bauhaus-stuttgart.de/ (2004)

15


