
 1 of 10

Revisiting the Delta IC Approach to Component Recovery

Gerardo Canfora†, Jörg Czeranski‡, and Rainer Koschke‡

†University of Sannio, Palazzo Bosco Lucarelli, Piazza Roma, 82100 Benevento, Italy
‡University of Stuttgart, Breitwiesenstr. 20-22, D-70565 Stuttgart, Germany

gerardo.canfora@unisannio.it, {czeranski, koschke}@informatik.uni-stuttgart.de

Abstract

Component recovery supports program understanding,
architecture recovery, and re-use. Among the best known
techniques for detection of re-usable objects (related glo-
bal variables and their accessor functions) is Delta-IC
[2]. This paper re-visits the original approach and extends
it in different ways. It describes a variant of Delta-IC suit-
able for reverse engineering that omits the slicing step of
the original approach. The underlying metric of Delta-IC
is extended toward types integrating ideas of the Internal
Access technique [32] such that abstract data types can
also be detected. Furthermore, the connectivity metric of
Delta-IC is combined with a cohesion metric based on
vertex connectivity. The new metrics and the new algo-
rithm for reverse engineering are quantitatively evaluated
using the framework proposed in [19] as a standard evalu-
ation of clustering techniques for component recovery.

1. Introduction

Recovering modules and subsystems from existing soft-
ware systems has proven useful in a number of ways and
many methods to automatically or semiautomatically de-
tect components have been published in the literature [1, 2,
5, 6, 8, 10, 12, 14, 15, 16, 17, 21, 23, 24, 25, 26, 27, 28, 29,
30, 32]. The abundance of published methods calls for
frameworks to unify, classify, and compare them in order
to make informed decisions. Girard and Briand introduce a
process which synthesizes many methods to extract com-
ponents from code [11]. Lakhotia [20] and Koschke [18]
present a comprehensive overview and a classification of
existing component recovery methods; Girard and Kosch-
ke compare six published methods which recover abstract
data types and objects [13]. Koschke and Eisenbarth dis-
cuss the need for a standardized approach to compare com-
ponent recovery methods and propose a framework to cost-
effectively run quantitative evaluation experiments [19].
The framework evolved from a quantitative evaluation of
diverse methods which detect the four kinds of components
described in Table 1 [13, 18].

One of the methods evaluated in [18] is the connectivity-
based Delta-IC approach defined by Canfora et al. [2]. In
its original formulation, the method detects abstract data
objects (ADO), but it can be extended to detect abstract

data types as described in Section 4.2. Basically, the meth-
od consists of two parts (see Figure 1):

1. A fully automatic technique that identifies ADOs in the
form of clusters of global variables and subprograms
that set and use them.

2. A repeated application of the automatic technique inter-
twined with human validation and the application of
slicing to subprograms that are part of more than one
cluster.

The fully automatic technique exploits a graph, called a
refer-to graph, in which nodes are either subprograms, glo-
bal variables, or constants and edges connect subprograms
to the global variables and constants they reference. The
technique relies on a metric called internal connectivity
(IC) that measures the fraction of the edges internal to a
cluster with respect to the total number of edges that have
at least one vertex in the cluster. IC captures the coupling
of a candidate ADO with respect to the rest of the system.

The evaluations presented in [13] and [18] used a slight-

Table 1. Types of components.

An abstract data object (ADO) is a group of global variables
and constants together with the routines which access them.

An abstract data type (ADT) is an abstraction of a data
structure (a user-defined type) and all the type’s valid opera-
tions on that data structure.

A hybrid component (HC) is an abstract data type that uses
global variables to save state information. For example, an
implementation can count in a global variable how many
instances of the ADT have been created.

A set of related subprograms (RS) are subprograms that
together perform a logical function, i.e., have functional
cohesion [33].

Figure 1: Original Delta-IC approach.

 repeat
build refer-to graph
for each subprogram S loop

if ∆IC(S) ≥ Θ then
if candidate-cluster (S) is accepted by user then

collapse ref-by (S) into a single new variable node
else

slice S using different variables of candidate-cluster (S)
until graph contains only isolated subgraphs consisting of a

variable grouping with one or more functions

Copyright 2000, IEEE. Published in the Proceedings of the Working Conference on Reverse Engineering, WCRE’2000, November,
23-25, 2000 in Brisbane, Australia. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purpose or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions
/ IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 088-1331, USA.

 2 of 10

ly different version of the method. The first difference is
that only the automatic technique is applied and the second
is that a two-step process replaces the iterative nature of the
method. At first, global variables, constants, and subpro-
grams are clustered to ADOs according to the automatic
technique. Then, all resulting clusters are rejected whose
internal connectivity is below a given threshold. These dif-
ferences are mainly due to the different focus of the work
described in [2], which is aimed at finding reusable compo-
nents and therefore involves changing the original code,
and the research discussed in [13] and [18], whose scope is
reverse engineering for program understanding and there-
fore excludes changing the original code through slicing.
The differences are also the consequence of a choice made
in [13] and [18] to compare only fully automatic compo-
nent recovery methods.

Overview. This paper revisits the IC-based method to ex-
tend it in two different directions, namely, recovering
ADTs and finding a better cohesion metric to identify the
candidates. The remainder of the paper is organized as fol-
lows. Section 2 reviews related research, sets the original
contribution of this paper, and introduces the terminology
used throughout the paper. Section 3 recalls basic defini-
tions of the IC-based method and discusses its properties.
Section 4 introduces the new method for reverse engineer-
ing combined with alternative cohesion metrics, and Sec-
tion 5 provides quantitative results of applying the new
variants.

2. Related Research

There exist several approaches to automatic ADO and
ADT recovery within procedural programs. Referring to
the categorization proposed in [17] they can be grouped
into domain-model-based approaches (e.g. [8, 9]), data-
flow-based approaches (e.g. [30]) and structure-based ap-
proaches. The latter family of approaches has been the
most widely investigated in the past years and there is a fair
amount of methods reported in the current literature (for a
summary, see [18]). Structure-based approaches can be
further categorized into connection-, metric-, graph-, and
concept-based approaches.

Connection-based approaches exploit direct relation-
ships between code entities, such as subprogram signature
types and accessed variables, to define the clusters. Exam-
ples of connection-based approaches include the Same
Module technique [14], the Part Type technique [25], and
the Internal Access technique [32].

Metric-based approaches are iterative in nature and use
metrics to determine the clusters. Schwanke’s method [28]
uses a similarity metric derived from direct calls among
subprograms and usage of non-local entities; Girard, Ko-

schke, and Schied [12] improve the method by distinguish-
ing between different uses of non-local entities. The type-
based method [26] uses a similarity metric that counts the
portion of types of parameters and local and non-local vari-
ables of subprograms.

Graph-based approaches are similar to connection-
based approaches, but the substantial difference is that they
exploit graph-theoretic analyses on the whole graph to de-
fine the clusters. Dominance analysis [4] and Strongly
Connected Components analysis [4] are examples of
graph-based approaches.

Finally, mathematical concept analysis has been pro-
posed as a method to identify ADOs and ADTs [3, 21, 27,
29]. Concept analysis is more general than graph-based and
connection-based methods as it can capture the same kinds
of relationships depicted in graphs and presents several ad-
ditional advantages. These include a finer control over the
granularity of the obtained modularization and an im-
proved discriminatory power: a concept lattice defines a
range of modularization options that can be chosen for dif-
ferent situations.

The original Delta-IC method [2] combines features of
the connection-based and metric-based approaches. It first
generates clusters using connection information, mainly
the accesses of subprograms to global variables, and then
exploits a metric to filter the generated clusters. This is a
distinctive feature of the method, as other connection-
based approaches simply cluster without rating the gener-
ated clusters.

2.1. Contributions

The original Delta-IC approach described by Canfora et
al. aims at finding reusable components [2]. Consequently,
the system may in fact be changed in this kind of applica-
tion. This paper describes a variant of Delta-IC useful for
reverse engineering in which changes are not allowed and
therefore program slicing is not possible. Thus, overlap-
ping candidates can result. The Delta-IC variant for reverse
engineering deals with overlapping components by merg-
ing very similar candidates, yet overlapping candidates
may remain if the components are not similar enough. In
the following, the term Delta-IC will refer to the variant for
reverse engineering if nothing else is said.

The original Delta-IC metric is based on variables and
subprograms referencing these variables and is therefore
able to identify abstract data objects only. This paper will
extend the definition of Delta-IC to types and their rela-
tionships to subprograms in order to identify abstract data
types.

The quantitative evaluation of Delta-IC published in
[18] used a predecessor of the evaluation framework de-
scribed in [19]. This paper re-evaluates Delta-IC and relat-

 3 of 10

ed fully automatic techniques by the new evaluation
framework proposed in [19] using the benchmarks de-
scribed in [18]. As a by-product of the evaluation in [18],
the analysis of available data suggested that the effective-
ness of the method could be improved by ignoring the part
of Delta-IC that measures cohesion of candidates, i.e, tak-
ing into consideration only the coupling of candidates ac-
cording to IC. This interesting outcome motivated our
search for a better cohesion metric. One intuitive way to
capture cohesion of ADOs is by way of the so-called vertex
connectivity of a graph: A graph has vertex connectivity K
if the deletion of any K-1 nodes fails to disconnect the
graph [7]. In this paper, we investigate alternative integra-
tions of the original coupling measurement of Delta-IC
with the vertex connectivity as a cohesion metric and eval-
uate these alternatives by application to the same set of sys-
tems used in the evaluation [18].

2.2. Terminology

A component is a set of related entities that together have
either functional [33] or abstract cohesion [22]. A cluster is
a set of subprograms (functions and procedures), variables,
constants, and user-defined types proposed as a candidate
component. The elements of a component or cluster are all
entities contained in this component or cluster, respective-
ly. A subprogram, S, is said to reference a variable, V, if S
sets or uses V or if S takes the address of V, denoted by ref-
erence(S, V) (until Section 4.2, we consider the relation re-
fer-to(S,V) a synonym of reference(S,V); in Section 4.2,
refer-to will be generalized). The set of referenced vari-
ables of a subprogram S is referenced-variables(S) = {V |
reference (S,V)}. Inversely, the set of subprograms refer-
encing variable V is referencing-subprograms (V) = {V |
reference (S,V)}. A type T mentioned in the signature of a
subprogram S is said to be a signature type, denoted by sig-
nature-type(S, T).

3. Delta IC Approach

High cohesion in the case of an abstract data object S im-
plies that each of the subprograms in S references many
variables of S; low coupling implies that each of the sub-
programs of S references only very few variables that do
not belong to S and that only few subprograms from outside
of S reference variables of S. The approach proposed by
Canfora et al. is heading in this direction. It basically con-
sists of two parts. At first, variables and subprograms are
clustered to ADOs according to a specific usage pattern.
Then all resulting clusters are rejected whose internal con-
nectivity is below a given threshold. The internal connec-
tivity metric proposed by Canfora et al. is described below.

3.1. Original Definition

The clustering pattern and the evaluation metric are de-
fined on the refer-to graph that describes the usage of glo-
bal variables and constants by subprograms (in the
following, the term variable always refers to global vari-
ables and constants). They can be explained more easily in
terms of the following definitions, given a subprogram S
and a global variable V:

subprograms related to S are all subprograms which
reference variables also referenced by S:

(1)

where refer-to (e) = referencing-subprograms (e) and
ref-by (S) = referenced-variables (S).

The reason why refer-to/ref-by are introduced here —
instead of using referencing-subprograms/referenced-
variables directly — is that Delta-IC will be extended to
types by re-defining refer-to and ref-by in Section 4.2.

closely-related subprograms of S are all subpro-
grams which reference only referenced variables of S:

(2)

Example. Given the refer-to graph of Figure 2 and F as the
subprogram under consideration, then the variables ref-
by(F) are {v1, v2}, the subprograms related to F are {F, f1,

f2, f3}, and the closely related subprograms of F are {F, f1,
f2}.

The candidate that is proposed as an abstract data object
consists of all closely related subprograms of the given
subprogram S plus the variables referred by S:

(3)

Example. In the example of Figure 2, the candidate cluster
is {v1, v2, F, f1, f2} for the given subprogram F. Note that

the proposed clusters depend upon the given subprogram.
Suppose F also referenced variable v3, then the cluster for
F would be {v1, v2, v3, F, f1, f2, f3}; from the perspective
of f3 we would get the cluster {v2, v3, f2, f3}. Thus, clusters

can overlap.
The candidate cluster is ranked by the internal connec-

Figure 2: Example refer-to graph.

subprograms-related-to (S) =

F F refer-to(e)∈{ }
e ref-by (S)∈

∪

closely-related-subprograms S() =

{F F refer-to e()∈ ref-by F() ref-by S()}⊆∧
e ref-by S()∈

∪

v1

v2

v3

f1

f2

f3

F
refer-to

candidate-cluster (S) =

closely-related-subprograms (S) ref-by (S)∪

 4 of 10

tivity metric and only proposed if this metric yields a value
greater than a user-determined threshold. The internal con-
nectivity measure (IC) and the improvement in internal
connectivity (∆IC) are defined as:

(4)

(5)

IC(S) is the portion of references to individual variables
of the cluster from subprograms also inside the cluster
(closely related subprograms) with respect to the number of
all references. If there is no reference from outside the clus-
ter, IC(S) is 1. In the example of Figure 2, IC(F) is as fol-
lows: (2 + 3) / (2 + 4) = 0.83. The subtrahend in the
definition of ∆IC reflects the portion of subprograms that
reference only a single variable of the cluster with respect
to the number of all references to that variable. In the ex-
ample of Figure 2, the subtrahend of ∆IC is 1/4: f2 is the

only subprogram that accesses a single variable only,
namely, v2, which is referenced by 4 subprograms. Conse-
quently, ∆IC(F) = 0.83 - 0.25 = 0.58.

The underlying intuition of the definition of IC is to have
only few references of variables from outside the cluster.
The motivation for ∆IC will be discussed below in more
detail.

The original Delta-IC approach uses the clustering algo-
rithm in Figure 1 [2] where the proposed cluster for a given
subprogram S is candidate-cluster(S) if ∆IC (S) ≥ Θ. It may
be a sign of loose relatedness when a candidate’s internal
connectivity is below the threshold. The reason may be that
the subprograms implement distinct logical functions and
therefore reference unrelated variables. The code of such
subprograms could be separated into distinct parts that cor-
respond to the distinct logical functions by means of pro-
gram slicing [31]. This is what Canfora et al. proposed in
[2].

3.2. Properties of the ∆IC Definition

The definition of ∆IC consists of two parts. The subtra-
hend in (5) covers substructures of the candidates that con-
sist of only one variable and those subprograms that access
solely this variable. The original motivation for the subtra-
hend in the definition (5) of ∆IC is to measure the “im-
provement in internal connectivity”. Recall the iterative
nature of the algorithm in Figure 1: In each step, the vari-
ables of an accepted candidate are collapsed into a new sin-
gle variable that serves as a representative of the cluster
further on. For example, if the candidate cluster around F

in Figure 2 is accepted, the refer-to graph in Figure 3 re-
sults.

In the second iteration, there is actually an accepted can-
didate {F, f1, f2, v1, v2} whose ∆IC is now 3/4 - 3/4 = 0. If

f3 is chosen, there are the three functions of the accepted
cluster that now access only one single variable - the col-
lapsed node - and hence ∆IC (f3) = 1 - 3/4. The increase of
internal connectivity for the accepted cluster in the second
iteration is therefore 1/4.

The subtrahend of ∆IC is motivated by the fact that the
clustered variables are collapsed. Yet, in the first iteration,
there are no clustered variables, i.e., each variable stands
for itself. In that case, the subtrahend actually represents
the internal connectivity of clusters around a single vari-
able that consist of subprograms that only access this vari-
able and no other variable, i.e., if Cv is a cluster that consists
of a single variable V and all subprograms that only refer to
this and no other variable, then the following equation
holds (a proof can be found in [18]):

(6)

Such substructures around a single variable might be
considered a candidate on their own and therefore it could
make sense to subtract their internal connectivity from the
overall internal connectivity of the composite structure.
Yet, this is intuitively not appropriate for the following rea-
sons:

• The decision to consider only subclusters of single vari-
ables is arbitrary. Why not considering subclusters with
two or more variables?

• Furthermore, one should think that a subprogram that
references one variable only and this variable is in the
cluster, the subprogram should definitely also be in the
cluster. An example is an abstract data object stack based
on two global variables stack_content (array for the
stack content) and stack_pointer (index into
stack_content) having an accessor function size to return
the number of elements on the stack; size would need to
reference stack_pointer only and still does belong to the
cluster.
These intuitive counter arguments are confirmed by the

quantitative evaluation described in Section 5. Conse-
quently, the sum of the subtrahend for ∆IC should run over
collapsed variables only.

A corollary of (6) is that for a cluster consisting of a sin-

IC(S) =

{F F refer-to e()∈ ref-by F() ref-by S()}⊆∧
e ref-by (S)∈

∑

{F F refer-to e()∈ }
e ref-by (S)∈

∑

∆IC(S) IC(S)
F ref-by (F) e{ }={ }

refer-to (e)

e ref-by (S)∈
∑–=

Figure 3: Collapsed refer-to graph.

{v1, v2}

v3

f1

f2

f3

Frefer-to

S CV: ∈∀ IC S()
F ref-by (F) e{ }={ }

refer-to (e)

e ref-by S()∈
∑=

 5 of 10

gle variable, V, and its accessor functions S1,…,Sn (n≥1)
that only reference V, ∆IC(Si) = 0 holds for all Si (1≤i≤n).

Note that this does not depend upon whether information
hiding is employed, i.e., whether there are other subpro-
grams from outside the cluster that reference the cluster
variable. In other words, the metric fails to make a distinc-
tion for coupling of clusters with a single variable. This
may be particularly problematic when the metric is extend-
ed to types because abstract data types mostly consist of a
single type only.

Another problematic property of ∆IC is that its two con-
stituents are unbalanced: While the value of IC can only be
between 0 and 1, the subtrahend of ∆IC can be between 0
and n (where n is the number of variables in a cluster). Giv-
en a subprogram, S, that refers to variables V1,…,Vn where
each variable Vi in V1,…,Vn is accessed by m other subpro-
grams Si,1,…,Si,m and ref-by(Si,j) = {Vi} for 1 ≤ j ≤ m (see

Figure 4). Then, the subtrahend of ∆IC is as follows:

 where

approaches 1 for large m, hence, .

Furthermore, the metric considers only coupling but not
cohesion of the candidate clusters though one would expect
that both coupling and cohesion should be taken into ac-
count.

A minor point of critique is that the term internal con-
nectivity is somewhat misleading. What the formula for the
internal connectivity measures is the fraction closely-relat-
ed-subprograms versus related-subprograms with respect
to individual variables of the cluster, which is a relationship
between the cluster and its environment as opposed to an
internal property.

4. Extensions

In a pure reverse engineering process for program un-
derstanding, the system must not be changed (it may be
changed afterwards), i.e., physically slicing subprograms
whose ∆IC value is below a threshold is inappropriate.
Leaving out slicing reduces the loop in Figure 1 to one it-
eration and overlapping candidates may remain. Merging
these overlapping candidates regardless of the degree of
overlap is not satisfactory. This approach was taken in an

earlier evaluation of Delta-IC [13] in order to get a fair
evaluation since other methods of this evaluation always
produce distinct candidates. For the application of the Del-
ta-IC method, we can do better: We can merge two candi-
dates when they share a large amount, otherwise they
remain distinct and overlapping. In particular, this is the
right approach when the user can be consulted. Merging
similar candidates frees the user from an overwhelming
number of similar candidates: She or he has to judge only
critical cases.

4.1. Extended Algorithm for Reverse Engineering

The Delta-IC algorithm for reverse engineering in
Figure 5 merges candidates only when they have many el-
ements in common (Step 3). We treat one component S as
a part of another component T when S ⊆p T holds according

to the following partial subset relationship, ⊆p, which al-
lows for inexact matches:

S ⊆p T if and only if (7)

where 0.5 ≤ p ≤ 1.0 is a tolerance parameter p that needs
to be specified for the comparison. If set to 1.0, S must be
completely contained in T. A more pragmatic adjustment is
p = 0.7, i.e., at least 70 percent of the elements of S must
also be in T. This number is motivated by the assumption
that at least three elements of a four-element component
must also be in the other component to be an acceptable
match. Step 3 merges the overlapping candidates. For the
connectivity metric, conn, in this algorithm, ∆IC is used.
Later we will propose alternative connectivity metrics, but
the algorithm remains the same.

4.2. Generalization for Types

The internal connectivity metric was originally pro-
posed only for abstract data objects. However, we can ex-
tend the domain of connectivity to types as well. Before we
actually generalize the metric, we state some observations.

There are two different kinds of entities of an abstract
data object: variables and constants that we do not want to
be accessed from outside of the abstract data object and
subprograms that act as public accessor routines. Accord-
ing to these two classes, there are the following different
kinds of relationships that we implicitly distinguished
above:

1. non-abstract usage: a variable is directly referenced by
a subprogram. There are two categories of non-abstract
usage:

a. the variable is non-abstractly used by a subprogram
within the component

Figure 4: Cluster with low ∆IC.

F ref-by (F) e{ }={ }
refer-to (e)

e ref-by S()∈

∑ n m 1–
m

-------------×=

m 1–
m

------------- IC S()∆ 1 n–≈

S

S1,1,…,S1,m

V1 V2 Vn

S2,1,…,S2,m Sn,1,…,Sn,m

…

refer-to

elements S() elements T()∩
elements S()

-- p≥

 6 of 10

b. the variable is non-abstractly used by a subprogram
outside of the component

2. abstract usage: a variable is not used directly by a sub-
program S outside of the component but by an accessor
routine of the component called by S, in other words: S
is accessing the variable only by means of the accessor
routine associated with the variable.
Cases 1.a and 2 conform to the information hiding prin-

ciple, case 1.b does not. Hence, metrics for coupling should
penalize 1.b. The metrics for variables and types in this sec-
tion are defined with this in mind.

As opposed to variables, we do not want to hide types -
they would not be of any use then. Instead, we want to hide
the underlying data structure of a type. This corresponds to
the idea of the Internal Access heuristic [32]. Types should
be used abstractly by subprograms outside of the abstract
data type. A non-abstract usage of a type T by a subpro-

gram S, denoted by non-abstract(S, T), is as follows [18]
(let E be an expression of type T):

• if T is a record, then any field selection E in S is a non-
abstract usage of T

• if T is an array, then any index subscript E in S is a non-
abstract usage of T

• if T is a pointer, then any dereference E in S is a non-
abstract usage of T

• if T is a standard type, then any application E of a stan-
dard operator in S is a non-abstract usage of T
Now that we have a unifying concept non-abstract us-

age for both types and variables, we can generalize the
specification of refer-to and ref-by accordingly. The for-
mulas (1) - (5) need not be changed. So far, refer-to(v) has
been defined as referencing-subprograms(v). Hence, the
definitions of refer-to and ref-by can be extended as fol-
lows in order to include the restricted signature-types rela-
tionships (only those signature types are considered that are
tagged as non-abstract usage):

(8)

(9)

(10)

By re-definition of refer-to, equation (5) is now also ap-
plicable to abstract data types.

4.3. Adding Cohesion to Delta-IC

From a purely relational point of view (i.e., without con-
sidering the actual semantics of the entities but only the re-
fer-to relationship), one wants to have all subprograms in
the cluster to refer to as many variables and types in the
cluster as possible to be highly cohesive. Though originally
not intended as such, the subtrahend of Delta-IC in (5)
could be viewed as a way to measure some degree of cohe-
sion along this line: If all subprograms of the cluster access
more than one variable in the cluster, the subtrahend is ze-
ro. Yet, as already discussed, this kind of cohesion metric
is not appropriate, in particular for clusters that contain
only one variable or type. An alternative way to define co-
hesion could be by way of the following equation that
yields 1 if all subprograms of the cluster reference all vari-
ables and types (let C be a cluster, subs(C) the subprograms
of C, and vt(C) the variables and types of C):

(11)

However, this measurement for cohesion is too strict in
practice. Our benchmarks do not contain larger compo-
nents for which equation (11) would yield a high value.
Variables, for example, represent different aspects of a

Figure 5: Delta-IC for reverse engineering.

Input:

• refer-to graph G

• connectivity threshold Θ

Output:

• set of component candidates C

Algorithm:

1. generate candidates:
for each subprogram S in G loop

cluster (S) := candidate-cluster (S);
end loop;

2. filter candidates whose connectivity is less than Θ:
for each subprogram S in G loop

if conn (S) < Θ then
cluster (S) := ∅;

end if;
end loop;

3. merge overlapping candidates:
while ∃ a pair of subprograms {S1, S2} in cluster

where
(cluster (S1) ⊆p cluster (S2) ∨ cluster (S1) ≠ ∅)
∨ (cluster (S2) ⊆p cluster (S1) ∨ cluster (S2) ≠ ∅)

loop
 cluster (S1) := cluster (S1) ∪ cluster (S2);
 cluster (S2) := ∅;
end loop;

4. return results (filter trivial components):
for S in cluster’Range where | cluster (S) | > 1
loop

C := C ∪ {cluster (S)}
end loop;

refer-to(S,e) reference S e,()
signature-type S e,() non-abstract S e,()∧()∨

⇔

refer-to e() S refer-to S e,(){ }=

ref-by S() e refer-to S e,(){ }=

refer-to e() subs C()∩
e vt C()∈

∑ 
  vt C() subs C()×()⁄

 7 of 10

component and very often only few subprograms of a com-
ponent deal with all aspects. E.g., a function size of a stack
would only access the stack pointer but not the stack con-
tent.

Again from a purely relational point of view, the entities
in the cluster are related to each other because they refer to
each other. Note that our definition of refer-to yields a bi-
partite refer-to graph, i.e., subprograms are directly related
to variables and types but not to other subprograms since
the call relationship is not covered by refer-to. Likewise,
variables and types are neither related. Yet, two subpro-
grams are at least indirectly related if they refer to the same
variable or type. To put this on a more formal basis, two en-
tities, E1 and E2, are directly related to each other if and

only if refer-to(E1, E2) or refer-to(E2, E1), denoted by re-

lated(E1, E2). Obviously, related is a symmetric relation-
ship. The related-graph is immediately induced by the
refer-to graph by simply turning the directed refer-to edges
into undirected related edges. Two entities, E1 and E2, are
said to be transitively (or indirectly) related if and only if
there exists a set of entities {e1, e2, …ek} such that relat-

ed(ei,ei+1) for 1≤ i < k and related(E1, e1) and related(ek,

E2). For example, in the related-graph in Figure 6(b) in-

duced by the refer-to graph in Figure 6(a), f1 and f3 are tran-
sitively related while f1 and f2 are even directly related.

According to the clustering criterion of Delta-IC, two
entities may only be in the same cluster if they are transi-
tively related to each other, which is intuitive from a purely
relational point of view: if two subprograms are not con-
nected via types in their signature or referenced variables
or other related subprograms, why should they be consid-
ered access functions of the same abstract data type or ob-
ject? Of course, there are also exceptions, like local utility
functions of a component that do not refer to the variables
and types in the component but are only called by the other
subprograms in the component for a special service. How-
ever, such local utility functions are no core access func-
tions of the component and can easily be detected by means
of dominance analysis [4, 14].

Now, it could be that the indirect related relationship of
f1 and f3 in Figure 6(b) is only spurious because f2 is actu-
ally a badly designed initialization routine that sets v1 and

v2. According to the information hiding principle, the sys-
tem should rather be restructured by providing two initial-
ization routines for the two distinct abstract data objects
around v1 and v2, respectively, and two calls from f2 to

these initialization routines. In terms of the refer-to graph
this would mean to remove the outgoing refer-to edges
from f2 and, consequently, also the related edges in the in-
duced related-graph. The example graph in Figure 6(b)
would then be split into two isolated subgraphs and we
would consider these subgraphs separate abstract data ob-
jects. However, in the general case, removal of one node
from the related-graph does not necessarily lead to isolated
subgraphs because there could be other entities that hold
the graph together. If many entities need to be removed un-
til the graph is finally split into isolated subgraphs, our con-
fidence that these remaining subgraphs are really abstract
data objects of their own decreases.

These observations directly correspond to the connectiv-
ity concept in graph theory. There are basically two kinds
of connectivity measures in graph theory: arc and vertex
connectivity. A graph has vertex connectivity K if the dele-
tion of any K-1 nodes fails to disconnect the graph [7].
Analogously, a graph has arc connectivity K if the deletion
of any K-1 edges fails to disconnect the graph. Algorithms
to compute both kinds of connectivity are described in [7].

The upper bound for the arc connectivity of a related-
graph is the minimal number of edges of a single node in
the graph: If all its edges are removed, the node is isolated
from the rest of the graph. In other words, a high arc con-
nectivity requires all subprograms to refer to many vari-
ables and types, similar to equation (11). As a matter of
fact, if there is a subprogram that accesses only one vari-
able but all other subprograms reference all variables, the
arc connectivity measure is even more drastic than equa-
tion (11) since the latter would still yield a high value
whereas the vertex connectivity of such a graph is only 1.
Since we already argued that equation (11) is too strict, ver-
tex connectivity is even less appropriate.

Similarly, a naive application of the vertex connectivity
measure to the related-graph is neither appropriate. Since
the related-graph is bipartite and subprograms determine
the formation of clusters with their patterns of access, we
can only consider deleting subprogram nodes for the vertex
connectivity when computing the connectivity. This can be
achieved by ascertaining the vertex connectivity on the
transformed related-graph. The transformed related-graph
G’ of a related-graph G contains only the subprograms of
G and there is an edge between two subprograms, S1 and
S2, in G’ if and only if ∃ (E∈G) related(S1, E) ∧ relat-

ed(S2, E). For example, the transformed related-graph of
the related graph in Figure 6(b) is shown in Figure 6(c).

The vertex connectivity, VC, of the transformed related-

Figure 6: Diverse graph types.

v1 v2

f1 f2 f3

refer-to

v1 v2

f1 f2 f3

related

(b)(a)

f1 f2 f3

related

(c)

 8 of 10

graph as a measure for cohesion can be integrated in differ-
ent ways with the internal connectivity IC of Delta-IC ac-
cording to (4) (let C(S) = candidate-cluster(S)):

(12)

(13)

(14)

Equation (12) simply adds cohesion to coupling (n is
used to weigh the influence of cohesion). Since the upper
bound of the vertex connectivity is the number of nodes -
1, coupling and cohesion are unbalanced (IC is always in
the range of 0 and 1) and should therefore be disregarded.
A better alternative is equation (13) which normalizes the
vertex connectivity and yields a value between 0 and 1. Pa-
rameter n can be used to adjust the influence of cohesion
versus coupling. In equation (14), the vertex connectivity is
used as a filter. All clusters whose cohesion is below a cer-
tain threshold m will have a connectivity of 0. We tried the
latter two alternatives on our benchmarks to obtain quanti-
tative data on the usefulness of these alternative defini-
tions. The next section reports on the result.

5. Benchmark Evaluation

This section provides quantitative results for the follow-
ing variants of a connectivity measure, conn, for the Delta-
IC algorithm for reverse engineering in Figure 5:

• dIC: conn(S) := ∆IC(S) acc. to (5)

• IC: conn(S) := IC(S) acc. to (4)

• ICVC: conn(S) := conn2(S) acc. to (13) where n=1

• ICVCF: conn(S) := conn3(S) acc. to (14) where m=2

Note that ICVC for n=0 and ICVCF for m=0 are equiv-
alent to IC. We measure recall and precision of the auto-
matic techniques by comparing their candidate
components to the reference components of our benchmark
systems (Aero, Bash, CVS, and Mosaic, each at the size of
about 35 KLOC and written in C) that were independently
and manually detected by software engineers [18]. Recall
is — roughly speaking — measured as degree of overlap
among matching candidates and references. A detailed def-
inition can be found in [19]. Precision is measured as the
number of candidates that do not correspond to a reference
component at all (false positives).

The ADO candidates were compared to the ADO and
HC references of these benchmarks, whereas the ADT can-
didates were compared to the ADT and HC references.
HCs were also used as references because the techniques
that detect ADOs (or ADTs) can also identify HCs at least
partially. Because very small and particularly large compo-

nents are not useful, candidates with less than 3 elements
and more than 75 elements were filtered out for the com-
parison, which reduces the number of false positives. The
largest references in the benchmark have about 50 elements
such that the candidates could not exceed the references by
more than 50%.

The connectivity thresholds of the Delta-IC variants
were determined by a systematic search for settings that
yield the best balance of high recall and low number of
false positives for the set of reference components. Table 3
lists the selected thresholds. In practice, one does not have
the set of components in advance. Instead, one has to find
reference components for a sample of the system either
manually or using other techniques. Consequently, the fig-
ures below describe the best possible outcome of the Delta-
IC variants. As a matter of fact, the results are sensitive to
the threshold and hence, if a suitable threshold cannot be
ascertained, the results will be worse. On the other hand, in
an interactive application of this approach, the user would
browse the list of candidates ranked according to their con-
nectivity from the highest rank to one that seems doubtful.
In other words, an a priori threshold would not be needed.

Recall and false positives are shown in Figure 7 and
Figure 8, respectively. The results include the generaliza-
tion for types. As a comparison point, the charts also con-
tain results for the following other well-known fully
automatic connection-based techniques:

• SM: Same Module for ADT and ADO recovery [14]

• IA: Internal Access for ADT and ADO recovery [32, 13]

• PT: Part Type for ADT recovery only [25]

• GR: Global Reference for ADO recovery only [32]

conn1(S) IC(S) n VC C S()()×+=

conn2(S) IC(S) n VC C S()()
subprograms C S()() 1–
---×+ 

  n 1+()⁄=

conn3(S)
IC(S) if VC C S()() m≥
0 otherwise

=

Figure 7: Recall rates.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

Aero Bash CVS Mosaic

dIC
ICVC

IC

ICVCF
SM

IA
PT

0
0,1
0,2

0,3

0,4
0,5

0,6
0,7
0,8

0,9

Aero Bash CVS Mosaic

dIC

ICVC
IC

ICVCF

SM

IA

GR

ADT

ADO

 9 of 10

The quantitative evaluation of the alternative connectiv-
ity metrics showed following results:

• in the case of ADO recovery, the Delta-IC variants are
better than Internal Access and Global Reference, yet
worse than Same Module (except for Mosaic)

• in the case of ADT recovery, the Delta-IC variants are
comparable to other techniques in terms of recall, yet do
have a higher number of false positives

• among the Delta-IC variants for ADT recovery, dIC and
ICVC have a higher recall, but also more false positives;
in the case of ADO recovery, IC seems to be the best
compromise among the Delta-IC variants both in terms
of recall and false positives

• the thresholds for acceptable connectivity of all Delta-IC
variants depend upon the systems; in our evaluation, we
obtained the best threshold on the basis of all reference
components, hence, the given results are the best ones
one would get if one knew the threshold in advance

• as in previous evaluations, even though we actually have
got better results with the new Delta-IC variants, the

results are still not good enough; the best recall rate
among all techniques including other well known tech-
niques is only about 40% on average; 83% recall of
ADOs for CVS by Same Module is an outlier

6. Conclusion

The original Delta-IC approach [2] can only detect ab-
stract data objects. In this paper, it was extended to detect
abstract data types as well. Furthermore, a variant of Delta-
IC suitable for reverse engineering was described and alter-
native combinations of the underlying interconnectivity
metric, IC, which measures coupling, with a cohesion met-
ric based on vertex connectivity were introduced and eval-
uated. The quantitative results obtained for ADO recovery
are better than two other standard techniques and worse
than Same Module. However, Same Module relies on the
assumption that the system is already well decomposed and
yields bad results if the related entities are in different mod-
ules. For ADT recovery, the Delta IC seems to be less suit-
ed.

With respect to the classification of automatic compo-
nent recovery techniques introduced in Section 2, the ex-
tension of Delta-IC adds a graph-based dimension to the
original method, as an analysis of the whole refer-to graph
is needed to compute the vertex connectivity used as cohe-
sion metric. The main differences with other graph-based
methods are the metric used for Delta-IC and the fact that
Delta-IC considers both coupling and cohesion to generate
the clusters, whereas other methods focus on one character-
istic. As an example, cohesion is the main driver of Strong-
ly Connected Component analysis [4], while Dominance
analysis focuses on coupling [4].

Future work needs to address the effect on detection
quality when connectivity thresholds are calibrated on
smaller samples of the system. In an evaluation of another
metric-based approach, namely, Similarity Clustering, we
could show that a sample of 20% of the components of the
system seems to be enough [18]. Whether this is also true
for Delta-IC, has to be shown. Furthermore, we want to in-
vestigate the effect of the tolerance parameter p of the par-
tial subset relationship (7) on overlap among candidates as
well as detection quality. Another interesting avenue will
be to examine whether articulation points in the related-
graph are good candidates for slicing. A long term goal is
to explore whether data flow analyses can improve the in-
sufficient effectiveness of connection-based techniques.

0References
[1] Belady, L.A., Evangelisti, C.J., ‘System Partitioning and its
Measure’, Journal of Systems and Software, 2(1), pp. 23-29,
February 1982.

Figure 8: False positives.

Table 3. Thresholds for acceptable connectivity.

System dIC ICVC IC ICVCF

Aero adt -0.24 0.75 0.66 0.60

ado 0.24 0.80 0.55 0.43

Bash adt 0.00 0.60 0.0-1.0 0.1-0.8

ado 0.38 0.91 0.81 0.45

CVS adt -0.40 0.76 0.80 0.01

ado 0.25 0.71 0.65 0.37

Mosaic adt -0.01 0.56 0.90 0.00

ado -0.40 0.50 0.00 0.00

0

2

4

6

8

10

12

14

16

Aero Bash CVS Mosaic

dIC

ICVC

IC

ICVCF

SM

IA

PT

ADT

0

5

10

15

20

25

30

Aero Bash CVS Mosaic

dIC

ICVC

IC

ICVCF

SM
IA

GR

ADO

 10 of 10

[2] Canfora, G., Cimitile, A., Munro, M., ‘An Improved
Algorithm for Identifying Objects in Code’, Journal of Software
Practice and Experience, 26(1), pp. 25–48, January 1996.

[3] Canfora, G., Cimitile, A., De Lucia, A., and Di Lucca, G. A.
‘A Case Study of Applying an Eclectic Approach to Identify
Objects in Code’, Proc. of 7th Workshop on Program
Comprehension, Pittsburgh, PA, May 1999, IEEE Comp. Soc.
Press, pp. 136-143.

[4] Cimitile, A. and Visaggio, G., ‘Software Salvaging and the
Call Dominance Tree’, Journal of Systems Software, 28:117–127,
1995.

[5] Choi, S.C., Scacchi, W., ‘Extracting and Restructuring the
Design of Large Systems’, IEEE Software, 7(1), pp. 66-71,
January 1990.

[6] Doval, D., Mancoridis, S., Mitchel, B.S, Chen, Y., Gansner,
E.R., ’Automatic Clustering of Software Systems using a Genetic
Algorithm’, Proceedings of the International Conference on
Software Tools and Engineering Practice, August 1999.

[7] Even, S., Graph Algorithms, Pitman Publishing Ltd., 1979.

[8] Gall, H., Klösch, R., ‘Finding Objects in Procedural Programs:
An Alternative Approach’, Proceedings of the Second Working
Conference on Reverse Engineering, pp. 208-216, Toronto, July
1995.

[9] Gall, H., Klösch, R., and Weidl, J., ‘Resolving Uncertainties
in object oriented re-architecturing of procedural code’, 7th
International Conference on Information Processing and
Management of Uncertainty in Knowledge Based Systems, July,
1998.

[10] Ghezzi, G., Jazayeri, M., Madrioli, D., ‘Fundamental
Software Engineering’, Prentice Hall International, 1991.

[11] Girard, J.F and Briand, L., ‘Reengineering Concepts,
Techniques and Tools for Component Extraction’, technical
report CRIM95/04-26, May, 1996.

[12] Girard, J.F., Koschke, R., Schied, G., ‘A Metric-based
Approach to Detect Abstract Data Types and Abstract State
Encapsulation’, Journal on Automated Software Engineering, 6,
pp. 357-386, Kluwer 1999.

[13] Girard, J.F., Koschke, R., ‘A Comparison of Abstract Data
Type and Objects Recovery Techniques’, Journal Science of
Computer Programming, Volume 36, Issue 2-3, Elsevier, March
2000.

[14] Girard, J.F., Koschke, R., ‘Finding Components in a
Hierarchy of Modules: a Step Towards Architectural
Understanding’, International Conference on Software
Maintenance, pp. 58-65, Bari, October 1997.

[15] Hutchens, D.H., Basili, V.R., ‘System Structure Analysis:
Clustering with Data Bindings’, IEEE Transactions on Software
Engineering, SE-11(8), pp. 749-757, August 1985.

[16] Kazman, R., Carrière, S.J., ‘Playing detective: reconstructing
software architecture from available evidence’, Technical Report
CMU/SEI-97-TR-010, ESC-TR-97-010, Software Engineering
Institute, Pittsburgh, USA, 1997.

[17] Koschke, R., ‘A Semi-Automatic Method for Component
Recovery’, Proceedings of the Sixth Working Conference on
Reverse Engineering, pp.256-267, Atlanta, October 1999.

[18] Koschke, R., ‘Atomic Architectural Component Detection
for Program Understanding and System Evolution’, Ph.D. thesis.
University of Stuttgart, 2000.

[19] Koschke, R. and Eisenbarth, T. ’A Framework for
Experimental Evaluation of Clustering Techniques’, Proc. of the
International Workshop on Program Comprehension, IEEE
Computer Society Press, June, 2000.

[20] Lakhotia, A., ‘A Unified Framework for Expressing
Software Subsystems Classification Techniques’, Journal
Systems Software, Elsevier Science Publisher, 36, pp. 211-231,
1997

[21] Lindig, C., Snelting, G., ‘Assessing Modular Structure of
Legacy Code Based on Mathematical Concept Analysis’,
Proceedings of the Nineteenth International Conference on
Software Engineering, Boston, 1997.

[22] Macro, A. and Buxton, J., The Craft of Software
Engineering, Addison-Wesley, Reading, MA, 1987.

[23] Müller, H., Wong, K., Tilley, S., ‘A Reverse Engineering
Environment Based on Spatial and Visual Software
Interconnection Models’, Proceedings of the Fifth ACM
SIGSOFT Symposium on Software Development Environments,
pp 88-98, Tyson’s Corner, December 1992.

[24] Müller, H.A., Orgun, M.A., Tilley, S.R., Uhl, J.S., ‘A
Reverse Engineering Approach to Subsystem Structure
Identification’. Journal of Software Maintenance: Research and
Practice, 5(4), pp. 181-204, December 1993.

[25] Ogando, R.M., Yau, S.S., Wilde, N., ‘An Object Finder for
Program Structure Understanding in Software Maintenance’,
Journal of Software Maintenance, 6(5), pp. 261–83, September-
October 1994.

[26] Patel, S., Chu, W., Baxter, R., ‘A Measure for Composite
Module Cohesion’, Proceedings of the Fourteenth International
Conference on Software Engineering, pp. 38-48, Melbourne, May
1992.

[27] Sahraoui, H., Melo, W, Lounis, H., Dumont, F., ‘Applying
Concept Formation Methods to Object Identfication in Procedural
Code’, Proceedings of the Twelfth Conference on Automated
Software Engineering, pp. 210-218, Nevada, November 1997.

[28] Schwanke, R. W., ‘An Intelligent Tool for Re-engineering
Software Modularity’, Proceedings of the International
Conference on Software Engineering, pp. 83–92, May 1991.

[29] Siff, M., Reps, T., ‘Identifying Modules via Concept
Analysis’, Proceedings of the International Conference on
Software Maintenance, pp. 170-179, Bari, October 1997.

[30] Valasareddi, R.R., Carver, D.L., ‘A Graph-based Object
Identification Process for Procedural Programs’, Proceedings of
the Fifth Working Conference on Reverse Engineering, pp. 50-
58, Honolulu, October 1998.

[31] Weiser, M., ‘Program Slicing’, IEEE Transactions on
Software Engineering, vol. SE-10, no. 4, July, 1984.

[32] Yeh, A.S., Harris, D., Reubenstein, H., ‘Recovering Abstract
Data Types and Object Instances From a Conventional Procedural
Language’, Proceedings of the Second Working Conference on
Reverse Engineering, pp. 227–236, July 1995.

[33] Yourdon, E. and Constantine, L.L., Structured Design,
Prentice Hall, Englewoood Cliffs, NJ, 1979.

